A q-analogue of a formula of Hernandez obtained by inverting a result of Dilcher
Abstract
We prove a q-analogue of the formula $ \sum_{1\le k\le n} \binom nk(-1)^{k-1}\sum_{1\le i_1\le i_2\le... \le i_m=k}\frac1{i_1i_2... i_m} = \sum_{1\le k\le n}\frac{1}{k^m} $ by inverting a formula due to Dilcher.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- July 1999
- DOI:
- arXiv:
- arXiv:math/9907029
- Bibcode:
- 1999math......7029P
- Keywords:
-
- Mathematics - Combinatorics;
- 05A10