Stability of Gorenstein Categories
Abstract
We show that an iteration of the procedure used to define the Gorenstein projective modules over a commutative ring $R$ yields exactly the Gorenstein projective modules. Specifically, given an exact sequence of Gorenstein projective $R$-modules $G=...\xra{\partial^G_2}G_1\xra{\partial^G_1}G_0\xra{\partial^G_0} ...$ such that the complexes $\Hom_R(G,H)$ and $\Hom_R(H,G)$ are exact for each Gorenstein projective $R$-module $H$, the module $\coker(\partial^G_1)$ is Gorenstein projective. The proof of this result hinges upon our analysis of Gorenstein subcategories of abelian categories.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- March 2007
- DOI:
- arXiv:
- arXiv:math/0703644
- Bibcode:
- 2007math......3644S
- Keywords:
-
- Mathematics - Commutative Algebra;
- Mathematics - Rings and Algebras;
- 13C05;
- 13D02;
- 13D07;
- 18G10;
- 18G15
- E-Print:
- 21 pages, uses XY-pic. Version 2 contains corrected proofs of Lemma 2.1 and Theorem 4.8