An explicit Skorokhod embedding for spectrally negative Levy processes
Abstract
We present an explicit solution to the Skorokhod embedding problem for spectrally negative Lévy processes. Given a process $X$ and a target measure $\mu$ satisfying an explicit admissibility condition we define functions $\f_\pm$ such that the stopping time $T = \inf\{t>0: X_t \in \{-\f_-(L_t), \f_+(L_t)\}\}$ induces $X_T\sim \mu$. We also treat versions of $T$ which take into account the sign of the excursion straddling time $t$. We prove that our stopping times are minimal and we describe criteria under which they are integrable. We compare our solution with the one proposed by Bertoin and Le Jan (1992) and we compute explicitly their general quantities in our setup. Our method relies on some new explicit calculations relating scale functions and the Itô excursion measure of $X$. More precisely, we compute the joint law of the maximum and minimum of an excursion away from 0 in terms of the scale function.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- March 2007
- DOI:
- 10.48550/arXiv.math/0703597
- arXiv:
- arXiv:math/0703597
- Bibcode:
- 2007math......3597O
- Keywords:
-
- Mathematics - Probability;
- 60G51;
- 60G40
- E-Print:
- This is the final version of the paper that has been accepted for publication in J. Theor. Probab. In this new version several typos were corrected and Lemma 6(iii) [now Lemma 5(iii)] was modified. The original publication is available at http://www.springerlink.com