The vector-valued big q-Jacobi transform
Abstract
Big $q$-Jacobi functions are eigenfunctions of a second order $q$-difference operator $L$. We study $L$ as an unbounded self-adjoint operator on an $L^2$-space of functions on $\mathbb R$ with a discrete measure. We describe explicitly the spectral decomposition of $L$ using an integral transform $\mathcal F$ with two different big $q$-Jacobi functions as a kernel, and we construct the inverse of $\mathcal F$.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- December 2006
- DOI:
- 10.48550/arXiv.math/0612643
- arXiv:
- arXiv:math/0612643
- Bibcode:
- 2006math.....12643G
- Keywords:
-
- Mathematics - Classical Analysis and ODEs;
- Mathematics - Quantum Algebra
- E-Print:
- 35 pages, corrected an error and typos