About the fractional parts of the powers of the rational numbers
Abstract
Let $p/q$ ($p, q \in \mathbb{N}^*$) be a positive rational number such that $p > q^2$. We show that for any $\epsilon > 0$, there exists a set $A(\epsilon) \subset [0, 1[$, with finite border and with Lebesgue measure $< \epsilon$, for which the set of positive real numbers $\lambda$ satisfying $<\lambda (p / q)^n> \in A(\epsilon)$ $(\forall n \in \mathbb{N})$ is uncountable.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- November 2006
- DOI:
- arXiv:
- arXiv:math/0611622
- Bibcode:
- 2006math.....11622F
- Keywords:
-
- Mathematics - Number Theory;
- 11K06
- E-Print:
- 5 pages