Cartes auto-organisées pour l'analyse exploratoire de données et la visualisation
Abstract
This paper shows how to use the Kohonen algorithm to represent multidimensional data, by exploiting the self-organizing property. It is possible to get such maps as well for quantitative variables as for qualitative ones, or for a mixing of both. The contents of the paper come from various works by SAMOS-MATISSE members, in particular by E. de Bodt, B. Girard, P. Letrémy, S. Ibbou, P. Rousset. Most of the examples have been studied with the computation routines written by Patrick Letrémy, with the language IML-SAS, which are available on the WEB page http://samos.univ-paris1.fr.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- November 2006
- DOI:
- 10.48550/arXiv.math/0611422
- arXiv:
- arXiv:math/0611422
- Bibcode:
- 2006math.....11422C
- Keywords:
-
- Mathematics - Statistics Theory;
- Computer Science - Neural and Evolutionary Computing;
- Nonlinear Sciences - Adaptation and Self-Organizing Systems
- E-Print:
- Article de synth\`{e}se sur les applications de l'algorithme de Kohonen pour la visualisation et l'analyse de donn\'{e}es