Partial flag varieties and preprojective algebras
Abstract
Let L be a preprojective algebra of Dynkin type, and let G be the corresponding complex semisimple simply connected algebraic group. We study rigid modules in subcategories sub(Q) for Q an injective L-module, and we introduce a mutation operation between complete rigid modules in sub(Q). This yields cluster algebra structures on the coordinate rings of the partial flag varieties attached to G.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- September 2006
- DOI:
- 10.48550/arXiv.math/0609138
- arXiv:
- arXiv:math/0609138
- Bibcode:
- 2006math......9138G
- Keywords:
-
- Mathematics - Representation Theory;
- Mathematics - Algebraic Geometry
- E-Print:
- 42 pages, 12 figures, 4 tables. Version 3 : minor corrections and one reference added. Final version to appear in Annales de l'Institut Fourier