Graph powers, Delsarte, Hoffman, Ramsey and Shannon
Abstract
The $k$-th $p$-power of a graph $G$ is the graph on the vertex set $V(G)^k$, where two $k$-tuples are adjacent iff the number of their coordinates which are adjacent in $G$ is not congruent to 0 modulo $p$. The clique number of powers of $G$ is poly-logarithmic in the number of vertices, thus graphs with small independence numbers in their $p$-powers do not contain large homogenous subsets. We provide algebraic upper bounds for the asymptotic behavior of independence numbers of such powers, settling a conjecture of Alon and Lubetzky up to a factor of 2. For precise bounds on some graphs, we apply Delsarte's linear programming bound and Hoffman's eigenvalue bound. Finally, we show that for any nontrivial graph $G$, one can point out specific induced subgraphs of large $p$-powers of $G$ with neither a large clique nor a large independent set. We prove that the larger the Shannon capacity of $\bar{G}$ is, the larger these subgraphs are, and if $G$ is the complete graph, then some $p$-power of $G$ matches the bounds of the Frankl-Wilson Ramsey construction, and is in fact a subgraph of a variant of that construction.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- August 2006
- DOI:
- arXiv:
- arXiv:math/0608013
- Bibcode:
- 2006math......8013A
- Keywords:
-
- Mathematics - Combinatorics