Transitive factorizations of free partially commutative monoids and Lie algebras
Abstract
Let $\M(A,\theta)$ be a free partially commutative monoid. We give here a necessary and sufficient condition on a subalphabet $B\subset A$ such that the right factor of a bisection $\M(A,\theta)=\M(B,\theta\_B).T$ be also partially commutative free. This extends strictly the (classical) elimination theory on partial commutations and allows to construct new factorizations of $\M(A,\theta)$ and associated bases of $L\_K(A,\theta)$.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- July 2006
- DOI:
- 10.48550/arXiv.math/0607420
- arXiv:
- arXiv:math/0607420
- Bibcode:
- 2006math......7420L
- Keywords:
-
- Mathematics - Combinatorics;
- Computer Science - Discrete Mathematics;
- Computer Science - Symbolic Computation;
- Mathematics - General Mathematics
- E-Print:
- Discrete Mathematics 246, Issue 1-3 (2002) 83 - 97