Foliations and Polynomial Diffeomorphisms of $\mathbb{R}^{3}$
Abstract
Let $Y=(f,g,h):\mathbb{R}^{3} \to \mathbb{R}^{3}$ be a $C^{2}$ map and let $\spec(Y)$ denote the set of eigenvalues of the derivative $DY_p$, when $p$ varies in $\mathbb{R}^3$. We begin proving that if, for some $\epsilon>0,$ $\spec(Y)\cap (-\epsilon,\epsilon)=\emptyset,$ then the foliation $\mathcal{F}(k),$ with $k\in \{f,g,h\},$ made up by the level surfaces $\{k={\rm constant}\},$ consists just of planes. As a consequence, we prove a bijectivity result related to the three-dimensional case of Jelonek's Jacobian Conjecture for polynomial maps of $\mathbb{R}^n.$
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- July 2006
- DOI:
- arXiv:
- arXiv:math/0607393
- Bibcode:
- 2006math......7393G
- Keywords:
-
- Mathematics - Dynamical Systems;
- 37C85;
- 57R30
- E-Print:
- 13 pages and 3 figures