Discrete Component Analysis
Abstract
This article presents a unified theory for analysis of components in discrete data, and compares the methods with techniques such as independent component analysis, non-negative matrix factorisation and latent Dirichlet allocation. The main families of algorithms discussed are a variational approximation, Gibbs sampling, and Rao-Blackwellised Gibbs sampling. Applications are presented for voting records from the United States Senate for 2003, and for the Reuters-21578 newswire collection.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- April 2006
- DOI:
- 10.48550/arXiv.math/0604410
- arXiv:
- arXiv:math/0604410
- Bibcode:
- 2006math......4410B
- Keywords:
-
- Mathematics - Statistics;
- 62F15;
- 68T50;
- 62P25
- E-Print:
- Lecture Notes in Computer Science. Subspace, Latent Structure and Feature Selection: Statistical and Optimization Perspectives Workshop, SLSFS 2005, Bohinj, Slovenia, February 23-25, 2005, Revised Selected Papers