Approximation of the Multiplication Table Function
Abstract
In this paper, considering the concept of Universal Multiplication Table, we show that for every $n\geq 2$, the inequality: $$ M(n)=#\{ij|1\leq i,j\leq n\}\geq\frac{n^2}{\mathfrak{N}(n^2)}, $$ holds true with: $$ \mathfrak{N}(n)=n^{\frac{\log 2}{\log\log n}(1+\frac{387}{200\log\log n})}. $$
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- March 2006
- DOI:
- 10.48550/arXiv.math/0603644
- arXiv:
- arXiv:math/0603644
- Bibcode:
- 2006math......3644H
- Keywords:
-
- Mathematics - Number Theory;
- Mathematics - Statistics;
- 65A05;
- 03G10;
- 11S40
- E-Print:
- 5 pages