Eigenvalue estimates for non-normal matrices and the zeros of random orthogonal polynomials on the unit circle
Abstract
We prove that for any $n\times n$ matrix, $A$, and $z$ with $|z|\geq \|A\|$, we have that $\|(z-A)^{-1}\|\leq\cot (\frac{\pi}{4n}) \dist (z, \spec(A))^{-1}$. We apply this result to the study of random orthogonal polynomials on the unit circle.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- March 2006
- DOI:
- 10.48550/arXiv.math/0603098
- arXiv:
- arXiv:math/0603098
- Bibcode:
- 2006math......3098D
- Keywords:
-
- Mathematics - Spectral Theory;
- Mathematics - Classical Analysis and ODEs;
- 34L15;
- 05E35;
- 47B35
- E-Print:
- 27 pages