Kernel theorems in spaces of tempered generalized functions
Abstract
In analogy to the classical isomorphism between $\mathcal{L}(\mathcal{S}(\mathbb{R}^{n}) ,\mathcal{S}^{\prime}(\mathbb{R}^{m}) ) $ and $\mathcal{S}^{\prime}(\mathbb{R}^{n+m}) $, we show that a large class of moderate linear mappings acting between the space $\mathcal{G}\_{\mathcal{S}}(\mathbb{R}^{n}) $ of Colombeau rapidly decreasing generalized functions and the space $\mathcal{G}\_{\tau}(\mathbb{R}^{n}) $ of temperate ones admits generalized integral representations, with kernels belonging to $\mathcal{G}\_{\tau}(\mathbb{R}^{n+m}) $. Furthermore, this result contains the classical one in the sense of the generalized distribution equality.
- Publication:
-
Mathematical Proceedings of the Cambridge Philosophical Society
- Pub Date:
- May 2007
- DOI:
- 10.1017/S0305004107000011
- arXiv:
- arXiv:math/0603035
- Bibcode:
- 2007MPCPS.142..557D
- Keywords:
-
- Mathematics - Functional Analysis;
- 45P05;
- 46F05;
- 46F30;
- 47G10
- E-Print:
- 15 pages