Local ill-posedness of the 1D Zakharov system
Abstract
Ginibre-Tsutsumi-Velo (1997) proved local well-posedness for the Zakharov system for any dimension $d$, in the inhomogeneous Sobolev spaces $(u,n)\in H^k(\mathbb{R}^d)\times H^s(\mathbb{R}^d)$ for a range of exponents $k$, $s$ depending on $d$. Here we restrict to dimension $d=1$ and present a few results establishing local ill-posedness for exponent pairs $(k,s)$ outside of the well-posedness regime. The techniques employed are rooted in the work of Bourgain (1993), Birnir-Kenig-Ponce-Svanstedt-Vega (1996), and Christ-Colliander-Tao (2003) applied to the nonlinear Schroedinger equation.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- February 2006
- DOI:
- 10.48550/arXiv.math/0602153
- arXiv:
- arXiv:math/0602153
- Bibcode:
- 2006math......2153H
- Keywords:
-
- Mathematics - Analysis of PDEs;
- 35Q55