A remark on Zoloterav's theorem
Abstract
Let n>=3 be an odd integer. For any integer a prime to n, define the permutation gamma_{a,n} of {1,...,(n-1)/2} by gamma_{a,n}(x)=n-\dec{ax}_n if {ax}_n>=(n+1)/2, and {ax}_n if {ax}_n<=(n-1)/2, where {x}_n denotes the least nonnegative residue of x modulo n. In this note, we show that the sign of gamma_{a,n} coincides with the Jacobi symbol (a/n) if n=1 mod 4, and 1 if n=3 mod 4.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- January 2006
- DOI:
- arXiv:
- arXiv:math/0601026
- Bibcode:
- 2006math......1026P
- Keywords:
-
- Mathematics - Number Theory;
- 11A07;
- 11A15
- E-Print:
- 8 pages