Cluster categories and duplicated algebras
Abstract
Let $A$ be a hereditary algebra. We construct a fundamental domain for the cluster category of $A$ inside the category of modules over the duplicated algebra $\bar{A}$ of $A$. We then prove that there exists a bijection between the tilting objects in the cluster category and the tilting $\bar{A}$-modules all of whose non projective-injective indecomposable summands lie in the left part of the module category of $\bar{A}$.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- September 2005
- DOI:
- 10.48550/arXiv.math/0509501
- arXiv:
- arXiv:math/0509501
- Bibcode:
- 2005math......9501A
- Keywords:
-
- Representation Theory;
- Rings and Algebras
- E-Print:
- 16 pages