Maximal Injective Subalgebras of Tensor Products of Free Groups Factors
Abstract
In this article, we proved the following results. Let $L(F(n_i))$ be the free group factor on $n_i$ generators and $\lambda (g_{i})$ be one of standard generators of $L(F(n_i))$ for $1\le i\le N$. Let $\A_i$ be the abelian von Neumann subalgebra of $L(F(n_i))$ generated by $\lambda(g_{i})$. Then the abelian von Neumann subalgebra $\otimes_{i=1}^N\A_i$ is a maximal injective von Neumann subalgebra of $\otimes_{i=1}^N L(F(n_i))$. When $N$ is equal to infinity, we obtained McDuff factors that contain maximal injective abelian von Neumann subalgebras.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- August 2005
- DOI:
- arXiv:
- arXiv:math/0508305
- Bibcode:
- 2005math......8305S
- Keywords:
-
- Operator Algebras