Formality theorem for Lie bialgebras and quantization of coboundary r-matrices
Abstract
Let $(g,\delta_\hbar)$ be a Lie bialgebra. Let $(U_\hbar(g),\Delta_\hbar)$ a quantization of $(g,\delta_\hbar)$ through Etingof-Kazhdan functor. We prove the existence of a $L_\infty$-morphism between the Lie algebra $C(\g)=\Lambda(g)$ and the tensor algebra $TU=T(U_\hbar(g)[-1])$ with Lie algebra structure given by the Gerstenhaber bracket. When $(g,\delta_\hbar,r)$ is a coboundary Lie bialgebra, we deduce from the formality morphism the existence of a quantization $R$ of $r$.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- June 2005
- DOI:
- arXiv:
- arXiv:math/0506487
- Bibcode:
- 2005math......6487H
- Keywords:
-
- Mathematics - Quantum Algebra