Euler Characteristics of Moduli Spaces of Curves
Abstract
Let ${mathcal M}_g^n$ be the moduli space of n-pointed Riemann surfaces of genus g. Denote by ${\bar {\mathcal M}}_g^n$ the Deligne-Mumford compactification of ${mathcal M}_g^n$. In the present paper, we calculate the orbifold and the ordinary Euler characteristic of ${\bar {\mathcal M}}_g^n$ for any g and n such that n>2-2g.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- June 2005
- DOI:
- 10.48550/arXiv.math/0506083
- arXiv:
- arXiv:math/0506083
- Bibcode:
- 2005math......6083B
- Keywords:
-
- Mathematics - Algebraic Geometry;
- Mathematics - Algebraic Topology