Algebraic Nijenhuis operators and Kronecker Poisson pencils
Abstract
We give a criterion of (micro-)kroneckerity of the linear Poisson pencil on $\frak{g}^*$ related to an algebraic Nijenhuis operator $N:\frak{g}\to \frak{g}$ on a finite-dimensional Lie algebra $\frak{g}$. As an application we get a series of examples of completely integrable systems on semisimple Lie algebras related to Borel subalgebras and a new proof of the complete integrability of the free rigid body system on $\frak{gl}_n$.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- April 2005
- DOI:
- arXiv:
- arXiv:math/0504337
- Bibcode:
- 2005math......4337P
- Keywords:
-
- Differential Geometry;
- 53D17;
- 53D20;
- 37J35
- E-Print:
- 10 pages, references added