Nonparametric estimation of scalar diffusions based on low frequency data
Abstract
We study the problem of estimating the coefficients of a diffusion (X_t,t\geq 0); the estimation is based on discrete data X_{n\Delta},n=0,1,...,N. The sampling frequency \Delta^{-1} is constant, and asymptotics are taken as the number N of observations tends to infinity. We prove that the problem of estimating both the diffusion coefficient (the volatility) and the drift in a nonparametric setting is ill-posed: the minimax rates of convergence for Sobolev constraints and squared-error loss coincide with that of a, respectively, first- and second-order linear inverse problem. To ensure ergodicity and limit technical difficulties we restrict ourselves to scalar diffusions living on a compact interval with reflecting boundary conditions. Our approach is based on the spectral analysis of the associated Markov semigroup. A rate-optimal estimation of the coefficients is obtained via the nonparametric estimation of an eigenvalue-eigenfunction pair of the transition operator of the discrete time Markov chain (X_{n\Delta},n=0,1,...,N) in a suitable Sobolev norm, together with an estimation of its invariant density.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- March 2005
- DOI:
- arXiv:
- arXiv:math/0503680
- Bibcode:
- 2005math......3680G
- Keywords:
-
- Mathematics - Statistics;
- 62G99;
- 62M05;
- 62M15 (Primary)
- E-Print:
- Published at http://dx.doi.org/10.1214/009053604000000797 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org)