Noncommutative point derivations for matrix function algebras
Abstract
We study a class of matrix function algebras, here denoted $\mathcal{T}^{+}(\mathcal{C}_n)$. We introduce a notion of point derivations, and classify the point derivations for certain finite dimensional representations of $\mathcal{T}^{+}(\mathcal{C}_n)$. We use point derivations and information about $n \times n$ matrices to show that every $\mathcal{T}^{+}(\mathcal{C}_n)$-valued derivation on $\mathcal{T}^{+}(\mathcal{C}_n)$ is inner.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- March 2005
- DOI:
- 10.48550/arXiv.math/0503643
- arXiv:
- arXiv:math/0503643
- Bibcode:
- 2005math......3643D
- Keywords:
-
- Mathematics - Operator Algebras;
- Mathematics - Functional Analysis;
- 47L75;
- 46H35
- E-Print:
- 11 pages, this version (3rd version) updates some notation and corrects typographical errors