Smooth values of the iterates of the Euler's Phi function
Abstract
Let $\phi(n)$ be the Euler-phi function, define $\phi_0(n) = n$ and $\phi_{k+1}(n)=\phi(\phi_{k}(n))$ for all $k\geq 0$. We will determine an asymptotic formula for the set of integers $n$ less than $x$ for which $\phi_k(n)$ is $y$-smooth, conditionally on a weak form of the Elliott-Halberstam conjecture.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- March 2005
- DOI:
- arXiv:
- arXiv:math/0503246
- Bibcode:
- 2005math......3246L
- Keywords:
-
- Mathematics - Number Theory;
- 11N37;
- 11B37;
- 34K05;
- 45J05
- E-Print:
- 20 pages, see also http://www.dms.umontreal.ca/~lamzouri