Triviality of the Peripheral Point Spectrum
Abstract
If $T_t=\rme^{Zt}$ is a positive one-parameter contraction semigroup acting on $l^p(X)$ where $X$ is a countable set and $1\leq p <\infty$, then the peripheral point spectrum $P$ of $Z$ cannot contain any non-zero elements. The same holds for Feller semigroups acting on $L^p(X)$ if $X$ is locally compact.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- February 2005
- DOI:
- arXiv:
- arXiv:math/0502069
- Bibcode:
- 2005math......2069D
- Keywords:
-
- Spectral Theory;
- Functional Analysis;
- 47D07;
- 47D06;
- 47Dxx