Subrepresentations in the Polynomial Representation of the Double Affine Hecke Algebra of type $GL_n$ at $t^{k+1}q^{r-1}=1$
Abstract
We study a Laurent polynomial representation $V$ of the double affine Hecke algebra of type $GL_n$ for specialized parameters $t^{k+1}q^{r-1}=1$. We define a series of subrepresentations of $V$ by using a vanishing condition. For some cases, we give an explicit basis of the subrepresentation in terms of nonsymmetric Macdonald polynomials. These results are nonsymmetric versions of \cite{FJMM} and \cite{KMSV}.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- January 2005
- DOI:
- 10.48550/arXiv.math/0501272
- arXiv:
- arXiv:math/0501272
- Bibcode:
- 2005math......1272K
- Keywords:
-
- Mathematics - Quantum Algebra;
- Mathematics - Representation Theory
- E-Print:
- 21 pages