Embedding $\ell_{\infty}$ into the space of all Operators on Certain Banach Spaces
Abstract
We give sufficient conditions on a Banach space $X$ which ensure that $\ell_{\infty}$ embeds in $\mathcal{L}(X)$, the space of all operators on $X$. We say that a basic sequence $(e_n)$ is quasisubsymmetric if for any two increasing sequences $(k_n)$ and $(\ell_n)$ of positive integers with $k_n \leq \ell_n$ for all $n$, we have that $(e_{k_n})$ dominates $(e_{\ell_n})$. We prove that if a Banach space $X$ has a seminormalized quasisubsymmetric basis then $\ell_{\infty}$ embeds in $\mathcal{L}(X)$.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- December 2004
- DOI:
- arXiv:
- arXiv:math/0412171
- Bibcode:
- 2004math.....12171A
- Keywords:
-
- Mathematics - Functional Analysis;
- 46B28;
- 46B03
- E-Print:
- 10 pages