Minimal hypersurfaces with zero Gauss-Kronecker curvature
Abstract
We investigate complete minimal hypersurfaces in the Euclidean space $% \ {R}^{4}$, with Gauss-Kronecker curvature identically zero. We prove that, if $f:M^{3}\to {R}^{4}$ is a complete minimal hypersurface with Gauss-Kronecker curvature identically zero, nowhere vanishing second fundamental form and scalar curvature bounded from below, then $f(M^{3})$ splits as a Euclidean product $L^{2}\times {R}$, where $L^{2}$ is a complete minimal surface in $ {R}^{3}$ with Gaussian curvature bounded from below.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- November 2004
- DOI:
- arXiv:
- arXiv:math/0411627
- Bibcode:
- 2004math.....11627H
- Keywords:
-
- Differential Geometry;
- 53C42
- E-Print:
- 7 pages