Goldie conditions for Ore extensions over semiprime rings
Abstract
Let $R$ be a ring, $\sigma$ an injective endomorphism of $R$ and $\delta$ a $\sigma$-derivation of $R$. We prove that if $R$ is semiprime left Goldie then the same holds for the Ore extension $R[x;\sigma,\delta]$ and both rings have the same left uniform dimension.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- November 2004
- DOI:
- arXiv:
- arXiv:math/0411619
- Bibcode:
- 2004math.....11619L
- Keywords:
-
- Rings and Algebras;
- 16S32