On Poincare bundles of vector bundles on curves
Abstract
Let $M$ denote the moduli space of stable vector bundles of rank $n$ and fixed determinant of degree coprime to $n$ on a non-singular projective curve $X$ of genus $g \geq 2$. Denote by $\cU$ a universal bundle on $X \times M$. We show that, for $x,y \in X, x \neq y$, the restrictions $\cU|\{x\} \times M$ and $\cU|\{y\} \times M$ are stable and non-isomorphic when considered as bundles on $X$.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- November 2004
- DOI:
- 10.48550/arXiv.math/0411573
- arXiv:
- arXiv:math/0411573
- Bibcode:
- 2004math.....11573L
- Keywords:
-
- Algebraic Geometry;
- 14H60;
- 14F05;
- 32L10
- E-Print:
- 8 pages