Pure-injective hulls of modules over valuation rings
Abstract
If $\hat{R} is the pure-injective hull of a valuation ring $R$, it is proved that $\hat{R}\otimes\_RM$ is the pure-injective of $M$, for each finitely generated module $M$. Moreover, $\hat{R}\otimes\_RM\simeq\oplus\_{1\leq k\leq n}\hat{R}/A\_k\hat{R}$, where $A\_1,...,A\_n$ is the annihilator sequence of $M$. The pure-injective hulls of uniserial or polyserial modules are also investigated. Any two pure-composition series of a countably generated polyserial module are isomorphic.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- November 2004
- DOI:
- arXiv:
- arXiv:math/0411482
- Bibcode:
- 2004math.....11482C
- Keywords:
-
- Mathematics - Rings and Algebras;
- MSC 13F30
- E-Print:
- Journal of Pure and Applied Algebra 207 (2006) 63--76