Schrödinger type eigenvalue problems with polynomial potentials: Asymptotics of eigenvalues
Abstract
For integers $m\geq 3$ and $1\leq\ell\leq m-1$, we study the eigenvalue problem $-u^{\prime\prime}(z)+[(-1)^{\ell}(iz)^m-P(iz)]u(z)=\lambda u(z)$ with the boundary conditions that $u(z)$ decays to zero as $z$ tends to infinity along the rays $\arg z=-\frac{\pi}{2}\pm \frac{(\ell+1)\pi}{m+2}$ in the complex plane, where $P(z)=a_1 z^{m-1}+a_2 z^{m-2}+...+a_{m-1} z$ is a polynomial. We provide asymptotic expansions of the eigenvalue counting function and the eigenvalues $\lambda_{n}$. Then we apply these to the inverse spectral problem, reconstructing some coefficients of polynomial potentials from asymptotic expansions of the eigenvalues. Also, we show for arbitrary $\mathcal{PT}$-symmetric polynomial potentials of degree $m\geq 3$ and all symmetric decaying boundary conditions that the eigenvalues are all real and positive, with only finitely many exceptions.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- November 2004
- DOI:
- arXiv:
- arXiv:math/0411143
- Bibcode:
- 2004math.....11143S
- Keywords:
-
- Mathematics - Spectral Theory;
- Mathematical Physics;
- Mathematics - Mathematical Physics;
- High Energy Physics - Theory;
- Quantum Physics;
- 34L40;
- 34L20;
- 34M40
- E-Print:
- 31 pages, 1 figure