A note on commuting diffeomorphisms on surfaces
Abstract
Let Σ be a closed surface with nonzero Euler characteristic. We prove the existence of an open neighbourhood \mathcal{V} of the identity map of Σ in the C1-topology with the following property: if G is an abelian subgroup of Diff1(Σ) generated by any family of elements in \mathcal{V} , then the elements of G have common fixed points. This result generalizes a similar result of Bonatti (Bonatti C 1989 Difféomorphismes commutants des surfaces et stabilité des fibrations en tores Topology 29 101-26).
- Publication:
-
Nonlinearity
- Pub Date:
- July 2005
- DOI:
- 10.1088/0951-7715/18/4/005
- arXiv:
- arXiv:math/0408010
- Bibcode:
- 2005Nonli..18.1511F
- Keywords:
-
- group action abelian group fixed point compact surface;
- Dynamical Systems;
- Geometric Topology;
- 37B05;
- 37C25;
- 37C85
- E-Print:
- 16 pages