On the Galois group of Generalized Laguerre Polynomials
Abstract
Using the theory of Newton Polygons, we formulate a simple criterion for the Galois group of a polynomial to be ``large.'' For a fixed $\alpha \in \Q - \Z_{<0}$, Filaseta and Lam have shown that the $n$th degree Generalized Laguerre Polynomial $L_n^{(\alpha)}(x) = \sum_{j=0}^n \binom{n+\alpha}{n-j}(-x)^j/j!$ is irreducible for all large enough $n$. We use our criterion to show that, under these conditions, the Galois group of $\La$ is either the alternating or symmetric group on $n$ letters, generalizing results of Schur for $\alpha=0,1$.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- June 2004
- DOI:
- arXiv:
- arXiv:math/0406308
- Bibcode:
- 2004math......6308H
- Keywords:
-
- Number Theory;
- 11R32;
- 11R09
- E-Print:
- 6 pages