Nontrivial Classes in H*(Imb(S1,&R;n)) from Nontrivalent Graph Cocycles
Abstract
We construct nontrivial cohomology classes of the space $Imb(S^1,\R^n)$ of imbeddings of the circle into $\R^n$, by means of Feynman diagrams. More precisely, starting from a suitable linear combination of nontrivalent diagrams, we construct, for every even number $n\geq 4$, a de Rham cohomology class on $Imb(S^1,\R^n)$. We prove nontriviality of these classes by evaluation on the dual cycles.
- Publication:
-
International Journal of Geometric Methods in Modern Physics
- Pub Date:
- October 2004
- DOI:
- 10.1142/S0219887804000320
- arXiv:
- arXiv:math/0404196
- Bibcode:
- 2004IJGMM..01..639L
- Keywords:
-
- Mathematics - Geometric Topology;
- 58D10;
- 55R80;
- 81Q30
- E-Print:
- 10 pages, 11 figures. V2: minor changes, typos corrected