A lower bound for the canonical height on elliptic curves over abelian extensions
Abstract
Let E/K be an ellptic curve defined over a number field, let h be the canonical height on E, and let K^ab be the maximal abelian extension of K. Extending work of M. Baker, we prove that there is a positive constant C(E/K) so that every nontorsion point P in E(K^ab) satisfies h(P) > C(E/K).
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- May 2003
- DOI:
- arXiv:
- arXiv:math/0305041
- Bibcode:
- 2003math......5041S
- Keywords:
-
- Mathematics - Number Theory;
- Mathematics - Commutative Algebra;
- 11G05 (Primary) 11G10;
- 14G25;
- 14K15 (Secondary)
- E-Print:
- Journal of Number Theory 104 (2004), 353--372