Symplectic Resolutions for Symmetric Products of Surfaces
Abstract
Let $S$ be a smooth complex connected analytic surface which admits a holomorphic symplectic structure. Let $S^{(n)}$ be its $n$th symmetric product. We prove that every projective symplectic resolution of $S^{(n)}$ is isomorphic to the Douady-Barlet resolution $S^{[n]} \to S^{(n)}$.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- April 2003
- DOI:
- 10.48550/arXiv.math/0304066
- arXiv:
- arXiv:math/0304066
- Bibcode:
- 2003math......4066F
- Keywords:
-
- Algebraic Geometry