A note on the existence of H-bubbles via perturbation methods
Abstract
We study the problem of existence of surfaces in ${\bf R}^3$ parametrized on the sphere ${\mathbb S}^2$ with prescribed mean curvature $H$ in the perturbative case, i.e. for $H=H_0+\epsilon H_1$, where $H_0$ is a nonzero constant, $H_1$ is a $C^2$ function and $\epsilon$ is a small perturbation parameter.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- January 2003
- DOI:
- 10.48550/arXiv.math/0301265
- arXiv:
- arXiv:math/0301265
- Bibcode:
- 2003math......1265F
- Keywords:
-
- Analysis of PDEs;
- Differential Geometry;
- 53A10;
- 35J50;
- 35B20
- E-Print:
- 14 pages