Refined Restricted Permutations
Abstract
Define $S_n^k(\alpha)$ to be the set of permutations of $\{1,2,...,n\}$ with exactly $k$ fixed points which avoid the pattern $\alpha \in S_m$. Let $s_n^k(\alpha)$ be the size of $S_n^k(\alpha)$. We investigate $S_n^0(\alpha)$ for all $\alpha \in S_3$ as well as show that $s_n^k(132)=s_n^k(213)=s_n^k(321)$ and $s_n^k(231)=s_n^k(312)$ for all $0 \leq k \leq n$.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- March 2002
- DOI:
- 10.48550/arXiv.math/0203033
- arXiv:
- arXiv:math/0203033
- Bibcode:
- 2002math......3033R
- Keywords:
-
- Combinatorics;
- 05A15;
- 68R15
- E-Print:
- This article is dedicated to the memory of Rodica Simion