A multiplicative property of quantum flag minors
Abstract
We study multiplicative properties of the (quantum) dual canonical basis B* associated to a semi-simple complex Lie group G. We provide a subset D of B* such that the following property holds : if two elements b, b' in B* q-commute and if one of these elements is in D, then the product bb' is in B* up to a power of q, where q the quantum parameter. If G is SL_n, then D is the set of so-called quantum flag minors and we obtain a generalization of a result of Leclerc-Nazarov-Thibon, see ArXiv:Math.QA/0011074.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- December 2001
- DOI:
- 10.48550/arXiv.math/0112205
- arXiv:
- arXiv:math/0112205
- Bibcode:
- 2001math.....12205C
- Keywords:
-
- Representation Theory;
- Quantum Algebra
- E-Print:
- 10 pages