Classification of stable model categories
Abstract
A stable model category is a setting for homotopy theory where the suspension functor is invertible. The prototypical examples are the category of spectra in the sense of stable homotopy theory and the category of unbounded chain complexes of modules over a ring. In this paper we develop methods for deciding when two stable model categories represent `the same homotopy theory'. We show that stable model categories with a single compact generator are equivalent to modules over a ring spectrum. More generally stable model categories with a set of generators are characterized as modules over a `ring spectrum with several objects', i.e., as spectrum valued diagram categories. We also prove a Morita theorem which shows how equivalences between module categories over ring spectra can be realized by smashing with a pair of bimodules. Finally, we characterize stable model categories which represent the derived category of a ring. This is a slight generalization of Rickard's work on derived equivalent rings. We also include a proof of the model category equivalence of modules over the Eilenberg-Mac Lane spectrum HR and (unbounded) chain complexes of R-modules for a ring R.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- August 2001
- DOI:
- 10.48550/arXiv.math/0108143
- arXiv:
- arXiv:math/0108143
- Bibcode:
- 2001math......8143S
- Keywords:
-
- Mathematics - Algebraic Topology;
- 55U35 (Primary) 55P42 (Secondary)
- E-Print:
- 44 pages