Universal Vassiliev invariants of links in coverings of 3-manifolds
Abstract
We study Vassiliev invariants of links in a 3-manifold $M$ by using chord diagrams labeled by elements of the fundamental group of $M$. We construct universal Vassiliev invariants of links in $M$, where $M=P^2\times [0,1]$ is a cylinder over the real projective plane $P^2$, $M=\Sigma\times [0,1]$ is a cylinder over a surface $\Sigma$ with boundary, and $M=S^1\times S^2$. A finite covering $p:N\longrightarrow M$ induces a map $\pi_1(p)^*$ between labeled chord diagrams that corresponds to taking the preimage $p^{-1}(L)\subset N$ of a link $L\subset M$. The maps $p^{-1}$ and $\pi_1(p)^*$ intertwine the constructed universal Vassiliev invariants.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- May 2001
- DOI:
- 10.48550/arXiv.math/0105019
- arXiv:
- arXiv:math/0105019
- Bibcode:
- 2001math......5019L
- Keywords:
-
- Quantum Algebra;
- 57M25
- E-Print:
- 46 pages, many figures