Hopf Algebra Equivariant Cyclic Homology and Cyclic Homology of Crossed Product Algebras
Abstract
We introduce the cylindrical module $A \natural \mathcal{H}$, where $\mathcal{H}$ is a Hopf algebra and $A$ is a Hopf module algebra over $\mathcal{H}$. We show that there exists an isomorphism between $\mathsf{C}_{\bullet}(A^{op} \rtimes \mathcal{H}^{cop})$ the cyclic module of the crossed product algebra $A^{op} \rtimes \mathcal{H}^{cop} $, and $\Delta(A \natural \mathcal{H}) $, the cyclic module related to the diagonal of $A \natural \mathcal{H}$. If $S$, the antipode of $\mathcal{H}$, is invertible it follows that $\mathsf{C}_{\bullet}(A \rtimes \mathcal{H}) \simeq \Delta(A^{op} \natural \mathcal{H}^{cop})$. When $S$ is invertible, we approximate $HC_{\bullet}(A \rtimes \mathcal{H})$ by a spectral sequence and give an interpretation of $ \mathsf{E}^0, \mathsf{E}^1$ and $\mathsf{E}^2 $ terms of this spectral sequence.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- November 2000
- DOI:
- arXiv:
- arXiv:math/0011248
- Bibcode:
- 2000math.....11248A
- Keywords:
-
- Mathematics - K-Theory and Homology
- E-Print:
- Final version, to appear in "Crelle's Journal"