An example of a non acyclic Koszul complex of a module
Abstract
In his paper "Residues of a Pfaff system relative to an invariant subscheme" in Trans. Amer. Math. Soc. 352, 2000, 4019-4035, F. Sancho de Salas defines the universal Koszul complex of a module $M$ over a sheaf of rings $\mathcal{O}$ as ${\rm Kos}(M)=\Lambda (M)\otimes_{\mathcal{O}}S(M)$, where $\Lambda (M)$ and $S(M)$ stand for the exterior and symmetric algebras of $M$, endowed with the usual differential, and he conjectures (Conjecture 2.3.) that ${\rm Kos}(M)$ is always acyclic. We give here an example of a non acyclic Koszul complex ${\rm Kos}(M)$.
- Publication:
-
arXiv Mathematics e-prints
- Pub Date:
- October 2000
- DOI:
- arXiv:
- arXiv:math/0010320
- Bibcode:
- 2000math.....10320P
- Keywords:
-
- Commutative Algebra;
- Algebraic Geometry;
- 13D02