Equivariant Localization of Path Integrals
Abstract
We review equivariant localization techniques for the evaluation of Feynman path integrals. We develop systematic geometric methods for studying the semi-classical properties of phase space path integrals for dynamical systems, emphasizing the relations with integrable and topological quantum field theories. Beginning with a detailed review of the relevant mathematical background -- equivariant cohomology and the Duistermaat-Heckman theorem, we demonstrate how the localization ideas are related to classical integrability and how they can be formally extended to derive explicit localization formulas for path integrals in special instances using BRST quantization techniques. Various loop space localizations are presented and related to notions in quantum integrability and topological field theory. We emphasize the common symmetries that such localizable models always possess and use these symmetries to discuss the range of applicability of the localization formulas. A number of physical and mathematical applications are presented in connection with elementary quantum mechanics, Morse theory, index theorems, character formulas for semi-simple Lie groups, quantization of spin systems, unitary integrations in matrix models, modular invariants of Riemann surfaces, supersymmetric quantum field theories, two-dimensional Yang-Mills theory, conformal field theory, cohomological field theories and the loop expansion in quantum field theory. Some modern techniques of path integral quantization, such as coherent state methods, are also discussed. The relations between equivariant localization and other ideas in topological field theory, such as the Batalin-Fradkin-Vilkovisky and Mathai-Quillen formalisms, are presented.
- Publication:
-
arXiv e-prints
- Pub Date:
- August 1996
- DOI:
- arXiv:
- arXiv:hep-th/9608068
- Bibcode:
- 1996hep.th....8068S
- Keywords:
-
- High Energy Physics - Theory
- E-Print:
- 250 pages LaTeX (186 pages in landscape, 2-column option)