Graceful entrance to braneworld inflation
Abstract
Positively-curved, oscillatory universes have recently been shown to have important consequences for the preinflationary dynamics of the early universe. In particular, they may allow a self-interacting scalar field to climb up its potential during a very large number of these cycles. The cycles are naturally broken when the potential reaches a critical value and the universe begins to inflate, thereby providing a “graceful entrance” to early universe inflation. We study the dynamics of this behavior within the context of braneworld scenarios which exhibit a bounce from a collapsing phase to an expanding one. The dynamics can be understood by studying a general class of braneworld models that are sourced by a scalar field with a constant potential. Within this context, we determine the conditions a given model must satisfy for a graceful entrance to be possible in principle. We consider the bouncing braneworld model proposed by Shtanov and Sahni and show that it exhibits the features needed to realise a graceful entrance to inflation for a wide region of parameter space.
- Publication:
-
Physical Review D
- Pub Date:
- April 2006
- DOI:
- arXiv:
- arXiv:hep-th/0601203
- Bibcode:
- 2006PhRvD..73h3508L
- Keywords:
-
- 98.80.Cq;
- Particle-theory and field-theory models of the early Universe;
- High Energy Physics - Theory;
- Astrophysics;
- General Relativity and Quantum Cosmology
- E-Print:
- Phys.Rev. D73 (2006) 083508