Expansion in Feynman graphs as simplicial string theory
Abstract
We show that the series expansion of quantum field theory in Feynman diagrams can be explicitly mapped on the partition function of simplicial string theory—the theory describing embeddings of two-dimensional (2D) simplicial complexes into the spacetime of the field theory. The summation over 2D geometries in this theory is obtained from the summation over the Feynman diagrams and the integration over the Schwinger parameters of the propagators. We discuss the meaning of the obtained relation and derive the one-dimensional analog of the simplicial theory using the example of a free relativistic particle.
- Publication:
-
Soviet Journal of Experimental and Theoretical Physics Letters
- Pub Date:
- August 2004
- DOI:
- arXiv:
- arXiv:hep-th/0407018
- Bibcode:
- 2004JETPL..80..218A
- Keywords:
-
- 11.25.‑w;
- High Energy Physics - Theory;
- General Relativity and Quantum Cosmology;
- High Energy Physics - Phenomenology
- E-Print:
- Latex, 11pp, Minor mintakes are corrected