Counting BPS States via Holomorphic Anomaly Equations
Abstract
We study Gromov-Witten invariants of a rational elliptic surface using holomorphic anomaly equation in [HST1](hep-th/9901151). Formulating invariance under the affine $E_8$ Weyl group symmetry, we determine conjectured invariants, the number of BPS states, from Gromov-Witten invariants. We also connect our holomorphic anomaly equation to that found by Bershadsky,Cecotti,Ooguri and Vafa [BCOV1](hep-th/9302103).
- Publication:
-
arXiv e-prints
- Pub Date:
- June 2002
- DOI:
- 10.48550/arXiv.hep-th/0206206
- arXiv:
- arXiv:hep-th/0206206
- Bibcode:
- 2002hep.th....6206H
- Keywords:
-
- High Energy Physics - Theory;
- Mathematics - Algebraic Geometry
- E-Print:
- AMS-Latex, 30 pages