Double distributions and evolution equations
Abstract
Applications of perturbative QCD to deeply virtual Compton scattering and hard exclusive meson electroproduction processes require a generalization of usual parton distributions for the case when long-distance information is accumulated in nonforward matrix elements <p'\|O(0,z)\|p> of quark and gluon light-cone operators. In our previous papers we used two types of nonperturbative functions parametrizing such matrix elements: double distributions F(x,y;t) and nonforward distribution functions Fζ(Xt). Here we discuss in more detail the double distributions (DD's) and evolution equations which they satisfy. We propose simple models for F(x,y;t=0) DD's with correct spectral and symmetry properties which also satisfy the reduction relations connecting them to the usual parton densities f(x). In this way, we obtain self-consistent models for the ζ dependence of nonforward distributions. We show that, for small ζ, one can easily obtain nonforward distributions (in the X>ζ region) from the parton densities: Fζ(Xt=0)~f(X-ζ/2).
- Publication:
-
Physical Review D
- Pub Date:
- December 1998
- DOI:
- arXiv:
- arXiv:hep-ph/9805342
- Bibcode:
- 1998PhRvD..59a4030R
- Keywords:
-
- 12.38.Bx;
- 13.60.Fz;
- 13.60.Le;
- Perturbative calculations;
- Elastic and Compton scattering;
- Meson production;
- High Energy Physics - Phenomenology
- E-Print:
- 21 pages, Latex, 8 figures. To appear in Phys. Rev. D