Quantum dynamics and thermalization for out-of-equilibrium φ4 theory
Abstract
The quantum time evolution of φ4-field theory for a spatially homogeneous system in 2+1 space-time dimensions is investigated numerically for out-of-equilibrium initial conditions on the basis of the Kadanoff-Baym equations including the tadpole and sunset self-energies. Whereas the tadpole self-energy yields a dynamical mass, the sunset self-energy is responsible for dissipation and an equilibration of the system. In particular we address the dynamics of the spectral (“off-shell”) distributions of the excited quantum modes and the different phases in the approach to equilibrium described by Kubo-Martin-Schwinger relations for thermal equilibrium states. The investigation explicitly demonstrates that the only translation invariant solutions representing the stationary fixed points of the coupled equation of motions are those of full thermal equilibrium. They agree with those extracted from the time integration of the Kadanoff-Baym equations for t→∞. Furthermore, a detailed comparison of the full quantum dynamics to more approximate and simple schemes such as that of a standard kinetic (on-shell) Boltzmann equation is performed. Our analysis shows that the consistent inclusion of the dynamical spectral function has a significant impact on relaxation phenomena. The different time scales that are involved in the dynamical quantum evolution towards a complete thermalized state are discussed in detail. We find that far off-shell 1↔3 processes are responsible for chemical equilibration, which is missed in the Boltzmann limit. Finally, we briefly address the case of (bare) massless fields. For sufficiently large couplings λ we observe the onset of Bose condensation, where our scheme within symmetric φ4 theory breaks down.
- Publication:
-
Physical Review D
- Pub Date:
- January 2004
- DOI:
- arXiv:
- arXiv:hep-ph/0307353
- Bibcode:
- 2004PhRvD..69b5006J
- Keywords:
-
- 05.70.Ln;
- 05.60.-k;
- 11.10.Wx;
- 24.10.Cn;
- Nonequilibrium and irreversible thermodynamics;
- Transport processes;
- Finite-temperature field theory;
- Many-body theory;
- High Energy Physics - Phenomenology;
- Nuclear Theory
- E-Print:
- 77 pages, 26 figures